High Activity SnO₂/Al₂O₃ Catalyst for NO Reduction in the Presence of Oxygen

Jun Hua LI*, Ji Ming HAO, Li Xin FU, Tian Le ZHU, Zhi Ming LIU, Xiang Yu CUI

Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084

Abstract: The novel sol-gel SnO_2/Al_2O_3 catalysts for selective catalytic reduction NO by propene under lean burn condition were investigated. The results showed that the maximum NO conversion was 82% on the SnO_2/Al_2O_3 (5%Sn) catalyst, and the presence of H_2O and SO_2 improved the catalytic activity at low temperature. The catalytic activity of NO_2 reduction by propene is much higher than that of NO at the entire temperature range, and the maximum NO_2 conversion reached nearly 100% around the temperature 425°C.

Keywords: Selective catalytic reduction, De-NOx, lean burn, SnO₂/Al₂O₃.

The removal of nitrogen oxides from lean burn engine is a major environmental concern in order to meet the stringent emission regulation¹. Selective catalytic reduction (SCR) of nitrogen oxides is an efficient way to remove NOx from lean burn gasoline and diesel exhaust^{2,3}. The metal oxide catalysts have attracted much attention because they are more stable than zeolites in hydrothermal conditions^{4,5}. Tin supported on alumina was reported to be a good metal oxide catalyst for NO reduction by hydrocarbons in the presence of oxygen by some investigators. Kung *et al.*^{6,7} reported the SCR of NO over Sn/Al₂O₃ catalysts , prepared by impregnation method, and the presence of H₂O and SO₂ inhibited the catalytic activities in some extent. In this work, the SnO₂/Al₂O₃ catalysts with various Sn loading were prepared by sol-gel technique that is a useful method to prepare catalysts with highly dispersed species as compared to impregnation method. The catalytic activities for NO reduction by propene in the absence and presence of H₂O and SO₂ were investigated; the results showed that the SnO₂/Al₂O₃(5%Sn) was effective catalyst for NO reduction even in the presence of H₂O and SO₂.

Experimental

The SnO2/Al2O3 catalysts were prepared by single step sol-gel method. Aluminum triisopropoxide (AIP) was hydrolyzed at 85°C on the evaporator with a small amount of nitric acid, and then the necessary amount of SnCl4.5H2O dissolved in ethylene glycol was added to the sol solution, the solvents were evaporated by heating under reduced

^{*} E-mail: lijunhua@tsinghua.org.cn

Jun Hua LI et al.

pressure. The obtained gel was dried at 110°C over 24 hours and calcined at 600°C for 5 hours. Tin loading was changed from 1wt% to 10wt% as Sn metal.

The catalytic reduction activity was carried out in a quartz reactor with an internal diameter of 8 mm. The feed gas mixture consisted of 1000 ppm NO (or 1000 ppm NO₂), 1000 ppm C_3H_6 , 8% O₂, 10% H₂O (when used), and 100 ppm SO₂ (when used). The total gas flow rate of 300 mL·min-1 was maintained using helium as the carrier gas.

NO and NO₂ concentrations were continuously determined by chemiluminescent NOx analyzer (Thermo Environmental, Model 42H), and the gas chromatograph (Shimadzu GC 17A) is equipped with a Parapak Q column for the separation of CO₂, N₂O and C₃H₆. N₂O formation was not observed in the experiment.

() 1%Sn; () 2%Sn; () 5%Sn; () 10%Sn.

Results and Discussion

Figure1 showed the effect of Sn loadings on catalytic activities for NO conversion by propene. With the increase of Sn loading from 1wt% to 5wt%, the maximum NO conversion increased up to 82% at 450°C, however, when Sn loading reached 10wt%, no further improvement of the NO conversion was observed, although the temperature of the maximum NO conversion shifted to a lower temperature region.

The effect of H_2O and SO_2 on SnO_2/Al_2O_3 (5% Sn) catalyst for selective catalytic reduction of NO by C_3H_6 is shown in **Figure 2**. When added 10% H₂O into the reaction gas, NO conversion enhanced at the low temperature below 400°C. Furthermore the addition of 100 ppm SO₂, the NO conversion increased at the low temperature of 250-350°C, and the temperature window was broadened, but the maximum NO conversion decreased to 70% at 450°C. The reasons of promotional effect of H₂O are the selective inhibition by H₂O of the reaction steps resulting in propene oxidation to CO₂ and the removal of carbonaceous materials covering the catalytically active sites by H₂O. The enhancing effect of SO₂ could be assigned to the increase of Brönsted acid site that facilitate the activities of the hydrocarbon⁸.

 $\label{eq:Figure 2} \mbox{ The effect of H_2O and SO_2 on SnO_2/Al_2O_3 (5\% Sn) catalyst for NO reduction by C_3H_6.}$

()without H₂O and SO₂; ()with 10%H₂O without SO₂; ()with 10%H₂O and 100ppmSO₂.

Figure 3 shows the activities of SnO_2/Al_2O_3 (5%Sn) for NO and NO₂ reduction by propene. To compare the reactivity between NO and NO₂ found that the reactivity of NO₂ is much higher than that of NO at the entire temperature range, more than 60% NO₂ conversion was observed at a wider temperature range of 300-500°C, and the maximum NO₂ conversion reached nearly 100% at the temperature range of 400-450°C. These findings suggest that NO₂ is more reactive than NO, and the NO oxidation into NO₂ may be a limiting factor in NO reduction, and NO₂ is likely to react more quickly with propene on the surface of the catalyst to form N₂.

Figure 3 Comparison of reactivity between NO and NO₂ on SnO_2/Al_2O_3 (5%Sn) catalyst in the absence of H_2O and SO_2 .

() NO conversion to N_2 ; () NO_2 conversion to N_2 .

Jun Hua LI et al.

In summary, the SnO₂/Al₂O₃ catalysts prepared by sol-gel method for NO reduction by propene showed high activity and stability, the maximum NO conversion was 82% on the SnO₂/Al₂O₃ (5%Sn) catalyst, and the coexisting of H₂O and SO₂ enhanced the catalytic activity at the low temperature. The maximum NO₂ conversion reached nearly 100% around 450°C. From a practical point of view, the SnO₂/Al₂O₃ catalyst has a potential application to remove NOx in the lean burn gasoline and diesel engine

Acknowledgments

The work was financially supported by National 863 Project. (NO.2001AA643030)

References

- 1. A. Fritz, V. Pitchon, Appl. Catal. B, 1997, 37, 1.
- 2. H. Akama, K. Matsushita, Catal. Surv. Jpn., 1999, 3, 139.
- 3. R. Burch, J. P. Breen, F. C. Meunier. Appl. Catal. B, 2002, 39, 283.
- 4. K. I. Shimizu, A. Satsuma, T. Hattori, Catal. Surv. Jpn., 2000, 4, 115.
- 5. T. Maunula, Y. Kintaichi, M. Haneda, H. Hamada, Catal. Lett., 1999, 61, 121.
- 6. M.C.Kung, P. W. Park, D. W. Kim, et al., J. Catal., 1999, 181, 1.
- 7. P. W. Park, H. H. Kung, D. W. Kim, et al., J. Catal., 1999, 184, 440.
- 8. M. Haneda, Y. Kintaichi, H. Hamada, Appl. Catal. B., 2001, 31, 251.

Received 13 May, 2003